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New Inequalities for lsing Ferromagnets 
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It is shown that for Ising ferromagnets which obey the Lee-Yang theorem the 
Ursell functions or cumulants of the magnetization variable at nonzero external 
field satisfy series of inequalities. Several relations connecting Ursell functions 
with nonzero and zero field are derived. 
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1. I N T R O D U C T I O N  

Rigorous inequalities between the cumulants (or Ursell functions) of the 
magnetization variable have proven to be of great interest in the statistical 
mechanics of spin systems. Several methods have been proposed to derive 
such results; among these, we shall focus on the one which rests on the 
Lee-Yang  theorem. (~,2) 

Starting with the pioneering work of Baker, (3-5) a number  of interest- 
ing results have been derived; a particularly great achievement in this field 
has been obtained by Newman,  (6'7) who proved series of inequalities 
between zero magnetic field Ursell functions as well as for related objects 
(modified cumulants) when h v a 0. 

In this paper, we establish a connection between infinitely divisible 
probability distributions and the Lee -Yang  theorem. This allows us to 
derive new series of inequalities between the Ursell functions with nonzero 
magnetic field. Application of this method to other problems may well 
reveal to be fruitful. 

2. GENERAL REPRESENTATION FORMULA 

Let us consider d-dimensional Ising ferromagnets with pairwise inter- 
actions. The Gibbs measure within a finite volume A c Z d for a given 
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configuration (OA} at temperature /3-  ~ with external magnetic field h will 
be taken as 

d~A,fl,Bh((OA})--'~ ZAI(t~' t~h)( ~ E Jij-oioj "t- ~h E oil I-I dO(~ ( 1 )  
i,j~A i~A ] k~A 

where Jo >~ 0 is such that the thermodynamic limits exists and ZA(/~, /3h) is 
the partition function normalizing the Gibbs measure. We shall only 
consider in this paragraph even a priori free spin distributions O(x) which 
have the Lee-Yang property (6's~ and which are finite, i.e., 3a, b E ~: 
V e > 0  

o ( a - e ) = O ,  while o ( a + E ) > O  

p ( b - e ) <  1, while o ( b + e ) = l  (2) 

Such properties obviously hold for the usual "up and down" free spin 
model. 

Define the random variable M A for the spin block A c 2 d by 

MA = E Si (3) 
i@A 

where S i is the random variable associated to the ith spin. Let the expecta- 
tion value with respect to (1) for a fixed A be denoted by ( . )r One has 

Lemma 1. For zero magnetic field, the moment generating function 
of M A can be written as 

(exp(tMa))B,o = ~ ( 1  + , t 2 / t f )  (4) 
1 

where t E N, (tj)j~>l is an infinite family of real numbers such that 0 < t 1 
~< t 2 . . .  with ~,~~ < + oc. 

Proof. This lemma is a particular case of Newman's proposition 2 in 
Ref. 6. The first step is to show that (with his notations) b is to be put equal 
to zero. 

For a finite block A c ~d, the probability distribution of M A is 
obviously finite [cf. (2)] for any fixed/3 and/~h. The characteristic function 
of M A is therefore an entire function of exponential type and order 1. (9~ 
This shows that b must be equal to zero. 

Since a polynomial of finite order with respect to t can never be a 
moment-generating function, one must have an infinite number of zeros. 

Such M A will be called of type ..Z~ , We then notice that the factor 
1 + t2/ t f  is the inverse of the characteristic function of a Laplace probabil- 
ity distribution. This means that the moment-generating function of M A for 
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zero magnetic field can be written as an infinite product of inverse of 
characteristic functions. It should be stressed that the Laplace distribution 
is infinitely divisible. (j~ That  is to say there exists for every positive integer 
n a characteristic function f.(t) such that 

(1 + t2/~2) - ' =  (f,(t))" (5) 

Since the product of a finite number of infinitely divisible characteristic 
functions is infinitely divisible (l~ and since the limit of a sequence of 
infinitely divisible characteristic functions is infinitely divisible, (1~ we con- 
clude that the moment-generating function (exp(tMa))~,0 can be written as 
the inverse of an infinitely divisible characteristic function. More precisely, 
we use the following: 

Le mm a  2 [Kolmogorov formula (Ref. 10, p. 32)]. A function f(t) is 
the characteristic function of an infinitely divisible distribution with finite 
variance iff it admits the representation 

f ( t )=exp{iat  + f ? : I e x p ( i t x ) -  i - i t x ] d K ( x ) / x  2) (6) 

where a is a real constant, K(x) is a nondecreasing bounded function, and 
the function under the integral is equal to - t2/2 for x = 0. 

We thus obtain the following: 

T h e o r e m  1. If M A is of type ffinite, there exists a nondecreasing and 
bounded function KA(x ) such that 

log(exp(tMA))p,0 = -- f_+~[exp(i tx)-- l - i tx]dKA(x)/x  2 (7) 

where 
oo 

KA( + Oe) = 2 ~ l / t  7 (8) 
1 

For a fixed A c 2U, let us now introduce the Ursell functions U n(fih) 
defined by 

U.(flh) = 0}hlog ZA(/~, /~h) (9) 

where O~h denotes the nth partial derivative with respect to flh. Using (7), 
we are led to the following: 

T h e o r e m  9. If M A is of type ~zPf~n,e, then for any real t 

U2(t ) = ~/:exp(itx)dKA(X ) = f_+~ (10) 
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and more generally for n = 0, 1 , 2 , . . .  

U2, + l(t) = ( - ) ' f / : x  2"- 'sin(tx) dKA(x ) (11) 

= ( - ) ' 2 F ( 2 n  + 1) k sin[(2n + 1)arctan(t/t;)] 
j=l  

• sin 2. + 1[ arctan(t / ~) ] / t 2~ +l (12) 

u2. +2(0 = ( - ) ' ; / : x Z ' c ~  dKA(x) (13) 

= ( - ) ' 2 F ( 2 n  + 2) k cos[(2n + 2)arctan(t/tj)] 
j=l  

• sin2" + 2 [ arc tan( t /~)  ] / t 2"+2 (14) 

ProoL There is no difficulty to get (10), (11), and (13). Equations 
(12) and (14) may be obtained by direct computation of KA(X ) as a 
function of the zeros 5" [] 

3. NEW INEQUALITIES 

Using the preceding theorems, a great number of inequalities may be 
derived. In particular, by expanding both sides of Eq. (7) in powers of t, 
one may easily obtain the relation between the curnulant U2,(0 ) (n > 1) 
and the moment of order 2n - 2 of the unnormalized distribution KA(x); it 
is then a straightfoward matter to recover the results of Newman. (6) As far 
as we are concerned in this paper, this concludes the study of the h = 0 
situation. 

We now turn to the h =/= 0 case and discuss the main general inequali- 
ties that may be obtained from Theorem 2. 

Corollary 1. If M A is of type ~'~finite, then for any real t and 
n =  1 , 2 , 3 , . . .  

I U2n(t)l ~ I U2.(O)I (15) 
IU2._l(t)l < Itl IU2.(O)[ (16) 

Proof. Using (11) and (13), we get 

u4._2(t) - u4,_2(0) ~< 0 

U4n(t)- g4n(O) ~ 0 
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while, provided t > 0, 

U 4 n _ l ( t )  - -  [ U 4 n ( 0 )  ) 0 

u4._~(t)- tu4._2(o) ~< o �9 

If M A is of type S f i n i t e  , then for any real t v ~ 0 and Corollary 2. 
n = 2,3,4 . . . .  

I u~(e)f < r(n)f u , ( t ) l / I t l  ~ - '  (17) 

Proof. This follows in an obvious way from (12) and (14). �9 
In the thermodynamic limit, one is interested by the intensive quanti- 

ties defined by 

u~(flh)= ~ ( % ; % ; . . . ; % ) ~ , B h  (18) 
i2 . . . i n 

with the usual definition of the truncated correlations (it is understood that 
the mean value is to be taken with respect to the infinite Gibbs measure). 
As for h ~ 0  one has (11) 

un( flh) = lim Un( flh)/lA [ (19) 
A ? Z  a 

Corollary 2 implies that for any inverse temperature fl 

lun( fih)l -<< F(n)lm( Bh)[/[ NI (20) 
where m = u I is the specific magnetization. In particular in the case n -- 2, 
one has 

x( Bh) = ahmlph < [m( Bh)l/lh] 

This result which states that the slope of the tangent at any point on 
the magnetization curve is smaller than the slope of the straight line 
connecting this point to the origin is in fact a weak G.H.S. inequality; in 
the sense that the usual G.H.S. inequality implies (21) while the reverse 
does not hold. (This last result has independently been derived by Newman 
and Sokal. (T2)) For n > 2, we obtain from Eq. (20) upper bounds which are 
mostly useful for large values of the external field. One may then turn to 
what happens for small values of h. A partial answer is given by Corollary 1 
since the thermodynamic limits of (15) and (16) only apply for fl < fl~ as 
these relations imply quantities evaluated for zero magnetic field. 

Corollary 3. If m A is of type ~2Pfini te  , then for any real flh > 0 and 
n = 1,2,3 . . . .  

[ , , / 21  

o <. (MA)e,e~ < k=O ~ k! (n - 2k)! U~'-2k(fi)[ U2(O)/2]k (22) 

([x] denotes the greatest integer smaller or equal to x). 
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Proof. One has for any real t >I 0 

;0' ln(exp(tMA))r = tUl( th )  + g2(t + fih - x )x  dx 

t 2 ~< w,(th)  + ~- u2(o) (23) 

where we have used (15) and the fact that U 2 is positive for any value of its 
argument (G.K.S.). Equation (22) may then be obtained by exponentiation 
of (23) followed by an expansion in powers of t. Going over the thermody- 
namic limit in (23), one may easily derive the analog of (22) for the 
intensive quantities when t < tic- �9 

Corollary 4. If M A is of type o2Pfinite, then for any real t and for 
n =  1 , 2 , . . .  

[ u2o(t) • u~~ u~,(t) +_ u~,(o)l [ u~~ +_ u~,,2(o)t, 
n l + n  2 = 2 n  (24) 

u~,,,+,(o ~< [ u2,,,+2(,,)- v2,,,+2(o)] [ u~,,,~+~(O + ,v~,,~,+2(o)], 
n l + n  2 = 2 n -  1 (25) 

Proof. From (13) and (11) 

n ( '+aex2n-2s in2 tX U2n([ ) -- U2n(O ) = 2 ( - - )  j _ ~  TdKA(x) 

+ u2,,(o)= 2(-),,-i r/ x2 -2cos  U:,(t) 

[ ,x cos   A. l U~n+,(t) = 2 [ '+~xZ ' - l s in  y 

It then suffices to use H61der's inequality. (~3) �9 
We notice that the ""plus" case in (24) is a generalization to any real t 

of inequality (2.12) of Newman. (6) One may further verify the more 
symmetrical and somewhat intriguing relations 

2U~.(t) <~ U2~(t) + U2~(O) < U2.,(t)U2~(t) + U2.,(O)U2.~(O ), 

(n I + n 2 = 2n) (26) 

V2n+l(t) ~ U2nt+2(t)U2nz+2(t ) - -  U2nl+2(O) U2n2+2(O), 

(n l + n  2 = 2 n -  l) (27) 

Use of these results and of Corollary 1, one gets that for any n = 2, 3, 4 . . .  
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and for any real t, 

U.~(t) < I U2~,(O)H U2~2(0)1, (k, + k2 = n) (28) 

which may also be written in its weakest form as 

(2n - 2)! 
U~(t) < (n 2 - ~  z' U;(O) (29) 

As a final example of the kind of inequalities that may be derived from 
the representation formula, we present the following property which implies 
restrictions on the U2.(t ) - U2.(0 ) curves: 

Corollary 5. If M A is of type ~J~finite, then for any real t and for 
n = 1,2,3 . . . .  

4-- s I U2.(2kt) - u2.(O)l < Uz~(t) - U2.(O)] < 4kl/-/2. -~ - U2.(O)I , 

k = 1 , 2 ,  3 . . . .  ( 3 0 )  

Proof. This follows from the trigonometrical inequalities 

�9 

We wish to conclude by indicating the possible extension of our results 
to more general models than those for which M 6 is of type Sfin~tr 

1. If M A is of type ~-J as defined by Newman, (6) one just has to 
multiply the right-hand side of (4) by a factor exp(bt 2) (b/> 0); since this 
factor is the inverse of the characteristic function of a Gaussian distribu- 
tion, which is also infinitely divisible, one may easily carry over the analysis 
presented in this paper. This ensures the validity of our results in the 
framework of Euclidean field theory. 

2. If we consider n-dimensional vector spin models, our results hold 
for any rotationaly invariant model satisfying the Lee-Yang theorem. Up 
to now, this has been proven in complete generality when n = 2 for Ising 
ferromagnets with a free spin measure satisfying the Lee-Yang theoremJ 8) 
For n = 3, Dunlop and Newman (14) have proven the Lee-Yang theorem 
for classical rotators and limits of such measures. 2 
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